
Predictive Drone Swarms with Limited
Field of View

Robotics Project I (MICRO-580)

January 15th 2021

Student: KIMBLE Thomas SCIPER: 261204

Professor: FLOREANO Dario
Assistant 1: SORIA Enrica
Assistant 2: SCHILLING Fabian

CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Relevant Literature . 3

2 Methodology 5
2.1 Problem Statement . 5
2.2 Assumptions . 5
2.3 Online Distributed Model Predictive Control 6

2.3.1 Trajectory . 6
2.3.2 Model and constraints . 7
2.3.3 Collision Avoidance . 7
2.3.4 Cost Function . 8

2.4 Heading Angle control . 9
2.4.1 Limited Field of View . 9
2.4.2 Initialisation Methods . 10
2.4.3 Control . 11

2.5 Loose ends . 11

3 Results and Discussion 13
3.1 Experiment . 13
3.2 Results . 17
3.3 Discussion . 18
3.4 Future Work . 19

4 Conclusion 20

2

1 INTRODUCTION

1 Introduction

1.1 Motivation

Some robotics tasks such as manufacturing, surveillance, or search and rescue require
the use of multiple agents to be accomplished. Indeed some objectives would be too
time consuming or even impossible to complete if left to a single robot. Cooperation
is key in the success of multi-agent tasks, and we can look to nature for inspiration.
These observations have lead to groundbreaking discoveries and algorithms such as the
Reynolds flock algorithm [1].

Coordination is facilitated with a centralised approach with all agents sharing com-
mon information, but real life circumstances do not always allow for this. Therefore
another way to approach the problem is by using distributed systems, where each agent
is self-contained in its decision making as well as its sensing [2][3].

One standing issue with multi-agent robotics task is how to safely navigate an
environment. Collision free trajectory generation is key for safety and success in co-
operative missions. Obstacle avoidance can be successfully obtained with algorithms
and concepts such as potential fields [4] and vector field histogram [5]. But many al-
gorithms mitigate constraints, and assume that each agent is able to sense every other
neighbouring robot [6]. Indeed most sensors are limited, thus adding concept of a lim-
ited field of view.

In this project, the effect of a limited field of view is to be introduced to a previously
functional predictive model [2], combining state of the art collision avoidance algorithms
with real world constraints such as the limited field of view found in off the shelf sensors.

1.2 Relevant Literature

The DMPC approach to trajectory generation and obstacle avoidance algorithm pro-
posed by C. E. Luis, M. Vukosavljev, and A. P. Schoellig in Online Trajectory Genera-
tion with Distributed Model Predictive Control for Multi-Robot Motion Planning (2019)
[2] is the main base for the combination of predictive collision avoidance and limited
sensing in this project.

This paper proposes a model with a collision avoidance algorithm that can reduce
on average around 50% of the travel time required to complete a multi-agent point-to-
point navigation when compared to a Buffered Voronoi Cells (BVC) approach. Along
with these results, the algorithm has a 90% success rate for point-to-point navigation
with 30 agents in a 18m3 workspace.

3

1.2 Relevant Literature 1 INTRODUCTION

Other important research on the effects of limited FOV sensing is Collision Avoid-
ance with Limited Field of View Sensing: A Velocity Obstacle Approach by S. Roelof-
sen, D. Gillet and A. Martinoli (2017) [6], which shows that vision based collision
avoidance can remain safe when the robot’s sensors detect other robots in their limited
FOV. Their approach is validated by experiments with real quadrotor agents.

4

2 METHODOLOGY

2 Methodology

After stating the problem and the assumptions made, we will describe the online dis-
tributed model predictive control used to generate the trajectory and collision avoid-
ance for the agents. We will compare different obstacle avoidance algorithms, and
discuss the addition of a limited field of view for sensing.

2.1 Problem Statement

We have N agents with known linear dynamics in a 3-dimensional subset W ⊂ R3,
with N start points pstart,i ∈ W and N end points pend,i ∈ W . The scope of this
project does not consider static obstacles, so for each agent i the goal is to compute
inputs ui[k] ∈ R3 and uθ,i[k] ∈ R, for each time step k, such that:

• The agents reach their end position

• The agents do not collide with each other

• The agents remain within W

At every time step k, each agent i has a position pi[k], a velocity vi[k], a heading
angle θi[k], and a heading angle velocity ωi[k].

2.2 Assumptions

We assume that all agents are equipped with a controller for position trajectory track-
ing where the inputs ui are position references.

Due to implementation difficulties (part 2.5), inputs for position and heading angle
were to be computed separately therefore giving us two different discrete linear sys-
tems for trajectory tracking dynamics (equation 2.1) and for heading angle dynamics
(equation 2.2).

xi[k + 1] = Axi[k] + Bui[k] (2.1)

xθ,i[k + 1] = Cxθ,i[k] + Duθ,i[k] (2.2)

With inputs ui[k] ∈ R3 a position reference and uθ,i[k] ∈ R a heading angle ref-
erence, and with states xi[k] = (pi[k],vi[k]) for position and velocity and xθ,i[k] =
(θi[k], ωi[k]) for heading angle and angular velocity (around z-axis). For the position
and velocity states we have a second order system with A ∈ R6×6 and B ∈ R6×3. For

5

2.3 Online Distributed Model Predictive Control 2 METHODOLOGY

the heading angle and angular velocity states we have a first order system with C ∈
R2×2 and D ∈ R2×1. We use a first order system for the heading angle because we had
no knowledge of the rotational dynamics and for simplification purposes.

Each agent has the same limited field of view defined by a width angle α and a
height angle β as shown in figure 2. We assume that agent j’s states are known by
agent i if and only if agent j is in agent i’s field of view.

We assume that the agent’s field of view range is higher than the size of the
workspace W to ensure visibility of all agent’s within the field of view, despite how far
they are.

We assume that each agent knows the position of all other agents at the start
of the each simulation, whether in an agent’s FOV or not. We can assume that this
information is given, or that each agent could perform a rotational manoeuvre to gather
all of this information. From this we can test different heading angle initialisation
methods as visited in part 2.4.2. However, once the trajectory generation starts, agents
can only see others that are in their FOV.

2.3 Online Distributed Model Predictive Control

2.3.1 Trajectory

We use the same approach as in [2] which uses distributed model predictive control
(DMPC). The input sequence is recomputed to be applied over a finite horizon on K
time steps, where kt is the time step at time t0. A time step duration h is chosen and a
continuous input signal ui(t) for t ∈ [t0, t0 + th], with th = (K − 1)/h. The continuous
input signal ui(t) is a concatenation of Bézier curves.

Therefore the trajectory is defined by a concatenation Bézier curves, constructed
thanks to Bernstein polynomials of degree p. The curve is characterised by a series of
p+ 1 control points which serve as the optimisation variables to compute each agent’s
trajectory.

The Bézier curves are expressed in the power basis through a transformation B
which converts control points into polynomial coefficients, before being sample thanks
to another transformation Γ which then samples the polynomial at different time steps.
The input is sampled and noted Ui ∈ R3K and it can be obtained from a linear com-
bination of the control points of a continuous Bézier curve.

6

2.3 Online Distributed Model Predictive Control 2 METHODOLOGY

2.3.2 Model and constraints

The prediction model is the same as in [2]. Using the dynamics described in equation
2.1 with x̄i[kt] the measured state at time step kt and Ui the stacked input sequence,
we can represent the stacked predicted state sequence over the horizon for agent i Xi:

Xi = A0x̄i[kt] + ΛUi (2.3)

With Λ defined as:

Λ =

B 03 . . . 03

AB B . . . 03
...

.
...

AK−1B AK−2B . . . B

 (2.4)

and A0 defined as:

A0 =
[
(A)T (A2)T . . . (AK)T

]T
(2.5)

There are three constraints on the system that are to be taken into consideration
during the optimisation step. Input continuity ensures trajectory smoothness and gives
the equality constraint AeqUi = beq. Dynamic feasibility limits the actuation and
considers the environment dimensions giving us the inequality constraint AinUi ≤ bin.
Finally the collision avoidance described in part 2.3.3 gives the inequality constraint
AcollUi ≤ bcoll.

2.3.3 Collision Avoidance

For obstacle avoidance, the agents are required obey the inequality in equation 2.6
throughout the simulation. If the inequality is not obeyed between two agents, they
are considered to have crashed and their trajectory execution is stopped until the
simulation is terminated.

||Θ−1(pi[kt]− pj[kt])||2 ≥ rmin, ∀j 6= i (2.6)

Where Θ is a scaling matrix for safety boundaries, and rmin is the distance where
two agents are considered to have collided. The scaling matrix gives an ellipsoid with
higher values for vertical positions allowing for the simulation capture the downwash
effect of an agent’s propellers.

7

2.3 Online Distributed Model Predictive Control 2 METHODOLOGY

Three obstacle avoidance algorithms were compared: On-demand Collision Avoid-
ance in the input space, in the state space, and the Buffered Voronoi Cells method.
Each method has an example trajectory shown in figure 1. For more information on
each method refer to [2].

(a) On demand: Input space (b) On demand: State space (c) BVC

Figure 1: Comparison of trajectories of N = 2 agents switching positions while avoiding
each other using three different obstacle avoidance methods

Collision avoidance between agents was tested with two agents switching positions
being 4 meters apart. Ten experiments were run in each case, and the average execution
times was recorded for each method. Figure 1 shows the smoothest trajectory to be
the on-demand method with constraints imposed on the input space. As well as being
the smoothest, the average cost was lower, and the execution time was the lowest with
an average time of 6.2 seconds, as opposed to 6.8 seconds for the state space, and
8.0 seconds for BCV. Therefore, for the rest of the project, on-demand collision with
constraints on the input space was used.

2.3.4 Cost Function

The cost function is made up of three quadratic terms , to be minimised in order to
lead the agent to its goal position without collisions. The three terms are defined below.

Error to goal: equal to the sum of errors between the positions at the last κ < K time
steps of the horizon and the end location for each agent i

Ji,error =
K∑

k=K−κ

qk||p̂i[k|kt]− pend,i||22 (2.7)

Energy: equal to a weighted combination of the sum of squared derivatives of the input

Ji,energy =
r∑
c=0

αc

∫ th

0

|| d
c

dtc
ûi(t)|| dt (2.8)

8

2.4 Heading Angle control 2 METHODOLOGY

Collision constraint violation: on-demand collision avoidance was implemented as soft
constraints with a penalty term for violation

Ji,violation = ζ||εij||22 + ξεij (2.9)

With qk, αc, ζ and ξ positive scalar weights. This leads the following standard quadratic
programming problem to be solved:

minimize
Ui, εij

Ji,error + Ji,energy + Ji,violation

subject to

AeqUi = beq,

AinUi ≤ bin,

AcollUi ≤ bcoll,

ε ≤ 0

(2.10)

2.4 Heading Angle control

2.4.1 Limited Field of View

An agent i has a field of view Fi characterised by a width angle α, a height angle β
and it’s heading angle θi defined as:

Fi = {p | |∠xy(di,p− pi)| ≤ α/2, |∠z(di,p− pi)| ≤ β/2, } (2.11)

With di = [cos(θi), sin(θi), pz]
T the heading direction, ∠z the vertical angle, and ∠xy

the horizontal angle between two points.

Angles α and β are common and identical for all agents and we have 0 < α < π
and 0 < β < π. The field of view therefore resembles a pyramid with the summit at
position pi in the direction of the heading angle θi as shown in figure 2. In the scope
of this project, the field of view range is assumed to be larger than the workspace,
therefore we do not need to set a range limit. The field of view was chosen as such to
resemble the field of view of common sensors such as cameras.

9

2.4 Heading Angle control 2 METHODOLOGY

Figure 2: Field of view representation for an agent i

2.4.2 Initialisation Methods

We define three initialisation methods for each agent’s heading angle at the beginning
of each simulation: Goal, Closest and Most. Each method initialises heading angles
according to a set of rules. Figure 3 illustrates the three initialisation methods with
N = 5 agents, where each agent is at position pstart,i, with its trajectory planned to-
wards pend,i.

Goal:
Each agent i has an initial heading angle θi[k = 0] pointing towards its end position
pend,i as in figure 3a. This is simply done by calculating the angle between the pstart,i
and pend,i in the [x, y] plane.

Closest:
Each agent i has an initial heading angle θi[k = 0] pointing towards its closest neigh-
bour as in figure 3b.

Most:
Each agent i has an initial heading angle where the maximum amount of neighbouring
agents are in its field of view as in figure 3c. For each agent i, we select an agent j and
count the number agents within the field of view width α. We repeat for j = 1, 2, ..., N ,
j 6= i and keep the agent j with the most neighbours in α. We choose the heading
angle θi[k = 0] as the middle between the lowest and highest angle of the agents in
the field of view α, ensuring that the most agents are in the field of view. Finally, we
repeat for all agents i = 1, 2, ..., N .

10

2.5 Loose ends 2 METHODOLOGY

(a) Goal (b) Closest (c) Most

Figure 3: Heading angle initialisation methods for n = 5 agents with FOV width
α = 45◦

2.4.3 Control

After the initialisation step, the heading input uθ,i[k] is calculated thanks to a simple
proportional controller. For each agent i we calculate find all agents within its field
of view Fi. We then define a goal heading angle θgoal,i which is equal to the mean
angle between all agents in the FOV. We calculate the error from the goal at time step
k eθ[k], and apply a proportional controller with constraints on the actuation as in
equation 2.12.

uθ,i[k] = Kp(θgoal,i[k]− θi[k]) = Kp · eθ[k] (2.12)

Comparing a P, PD and PID controller for the heading control showed little dif-
ference in heading tracking performance during simulations. So we opted with the
P controller as it is the simplest of solutions, adding fewer operations per agent per
iteration, and saving memory by not saving previous error values for each agent.

2.5 Loose ends

The original plan was to have the heading angle be optimised using a predictive model
as well. The goal was to implement the heading angle as a continuation of the state
xi[k] = (pi[k],vi[k]), with pi[k] = [pxi, pyi, pzi, pθi] and vi[k] = [vxi, vyi, vzi, vθi]. This
would have given us a single discrete linear system for trajectory tracking dynamics
including the heading angle with inputs ui[k] ∈ R4:

xi[k + 1] = Axi[k] + Bui[k] (2.13)

11

2.5 Loose ends 2 METHODOLOGY

We would have then created a cost function for vision of other agents Jvision with
new inequality constraints from the limited field of view AfovUi ≤ bfov. The quadratic
programming would have been formulated as such:

minimize
Ui, εij

Ji,error + Ji,energy + Ji,violation + Jvision

subject to

AeqUi = beq,

AinUi ≤ bin,

AcollUi ≤ bcoll,

AfovUi ≤ bfov,

ε ≤ 0

(2.14)

Unfortunately this solution was not explored fully because of implementation limi-
tations. After implementing the heading angle into the agent’s state, a trajectory was
calculated but it was not optimal. An example trajectory is shown in figure 4. This
solution should be reviewed and continued with future work.

Figure 4: Non optimal trajectory generation of N = 2 agents while trying to implement
heading angle into state. Note that the heading angle was represented as a cone at
this stage of the project, and was not functional in this simulation.

12

3 RESULTS AND DISCUSSION

3 Results and Discussion

In this section, we will describe the experiments ran to evaluate the performance of
the model. We will report the results and compare different parameters for FOV and
initialisation. Figure 5 shows a screenshot of a simulation being run to give a visual
representation of the experiments run. This figure shows a swarm of N = 4 agents
flying closely from one end of the workspace to the other with FOV angles α = 60◦

and β = 30◦.

Figure 5: Screen capture mid simulation of the trajectory generation of N = 4 agents
with visualisation of the heading angles (arrows), and the field of view (pyramids).

3.1 Experiment

The aim of the first set of experiments is to evaluate the performance of the model
using different FOV height and width angles α and β, as well as how the heading
initialisation impacts the performance.

For each initialisation mode, we run simulations with N = 3, 6 and 9 agents. We
vary the FOV angles from 15◦ to 180◦ with 15◦ increments to create a heatmap for each
initialisation mode with each number of agents.

13

3.1 Experiment 3 RESULTS AND DISCUSSION

For each agent i, i = 1, 2, ..., N , if i is an odd number than it is placed on the
x = 2.5m axis, if i is an even number than it is placed on the x = −2.5m axis. Agents
are spread randomly along the y-axis within y = [−3m 3m], and randomly along the
z-axis within z = [0.8m 1.2m] therefore giving us pstart,i. End positions are determined
the same way within the same boundaries for y and z except x values have their signs
switched. This means that if an agent starts on the x = 2.5m axis, it will finish on
the x = −2.5m axis, giving us pend,i. All agents are initialised at least d = 0.3m a part.

This initialisation can be seen in figure 6 for each initialisation mode stated in part
2.4.2, with N = 3, 6 and 9 agents. This figure shows a view from above with a FOV
width angle α = 60◦.

We use the average number of collisions over 5 experiments as a metric with each
parameter combination to evaluate the models performance. A collision between two
agents is reported when two agents are closer than d = 0.3m, and only one collision
per agent pair is considered per simulation, avoiding counting multiple collisions for
two agents stuck together.

We ensure that each experiment allows for all agents to reach their end position
by setting the experiment length to 15seconds, a value chosen by previous tests to
determine the maximal time for N ≤ 9 agents. We choose to not evaluate agent speed,
nor to evaluate the time to reach the goal in this experiment. Results are shown in
figure 7.

14

3.1 Experiment 3 RESULTS AND DISCUSSION

(a) Goal with N = 3 agents (b) Goal with N = 6 agents (c) Goal with N = 9 agents

(d) closest with N = 3 agents (e) Closest with N = 6 agents (f) Closest with N = 9 agents

(g) Most with N = 3 agents (h) Most with N = 6 agents (i) Most with N = 9 agents

Figure 6: In-simulation example of different initialisation modes with α = 60◦. Sub-
figures show results for N = 3, 6 and 9 agents with a), b), c) using Goal initialisation
mode, d), e), f) using Closest initialisation mode and g), h), i) using Most initialisation
mode

15

3.1 Experiment 3 RESULTS AND DISCUSSION

(a) Goal with N = 3 agents (b) Goal with N = 6 agents (c) Goal with N = 9 agents

(d) Closest withN = 3 agents (e) Closest with N = 6 agents (f) Closest with N = 9 agents

(g) Most with N = 3 agents (h) Most with N = 6 agents (i) Most with N = 9 agents

Figure 7: Average number of collisions using different FOV angle width and height
angles α and β over 5 experiments for each parameter combination. Note that scales
are not the same for each sub-figure. Sub-figures show results for N = 3, 6 and 9 agents
with a), b), c) using Goal initialisation mode, d), e), f) using Closest initialisation mode
and g), h), i) using Most initialisation mode

16

3.2 Results 3 RESULTS AND DISCUSSION

3.2 Results

By comparing rows in figure 2.2 we can clearly see that the initialisation mode perfor-
mances are the poorest with is Goal, followed by Closest, and the best performing is
Most. Following is a more detailed overview of the performance with each mode.

Goal:
For each number of agents, we can see a trend where higher FOV angles induce fewer
collisions. We specifically notice that the height angle β has more effect on the number
of collisions compared to the width angle α.

From figure 7a with N = 3 we can see that the maximal average amount of collisions
reported is 1 with the lowest width and height angles both at 15◦. The best performance
for three agents is with β ≥ 60◦ and α ≥ 105◦.

Figure 7b with N = 6 shows the same trends but with performance with width
angles lower than β = 105◦ being very low, showing more collisions. The highest
number of collisions happens with β ≤ 45◦ where the number reaches an average of 3.4
collisions.

In figure 7c we see very poor performances for N = 9agents, with the same trends
in angles as previously, but this time reaching up to an average of 8.6 collisions.

Closest:
We see a similar trend as with the Goal heading initialisation method, however with
more variability in the number of collisions with different angles. Lower angles in both
width and height lead to more collisions, however here we see that in general lower
width angles α lead to more collisions than lower height angles β.

For N = 3 agents, figure 7d shows good performances for angles higher than 15◦,
with a maximum average of 0.2 collisions for all angles above this value.

In figure 7e we can see that the highest number of collisions occurs with α = β = 15◦

with on average 2 collisions for N = 6 agents. Best performances here are for high
angles above 120◦ in both width and height.

Figure 7f shows that for N = 9 agents collisions have an average above 0.4 collisions
across all angles. The maximal values are for α = 15◦ with up to 3.8 average collisions.

Most:
This heading initialisation method shows to be the most promising with slightly more
collisions on average at lower width and height angles, but with a general better per-
formance than the other methods.

We can see in figure 7g that the model performs well overall, with slightly more
collisions with α = 15◦ and β ≤ 30◦. However the maximal average collision is 0.4
which is lower than the other two methods for N = 3.

17

3.3 Discussion 3 RESULTS AND DISCUSSION

For N = 6, figure 7h shows that medium to width angles α ≥ 45◦ and height angles
β > 75◦ show very good results with a maximal average of 0.4 collisions only in two
cases. For other angles, we can see that lower height angles β seem to lead to a higher
number of collisions with a value of up to 2.4 average.

Finally in figure 7i for N = 9 agents good performances are seen for α ≥ 60◦

and β ≥ 90◦. Below these angles we can get up to an average of 3.8 collisions for
α = β = 45◦ for example.

3.3 Discussion

The previous results show how different heading initialisation methods and different
FOV angles can affect the performance of agents agents avoiding each other during
flights towards a goal.

Surprisingly, the different initialisation methods had a larger impact on the number
of collisions than expected. With N = 9 agents, maximal average collisions varied from
3.4 to 8.6 when using different methods. The Closest method outperformed the other
two methods in maximal average number of collisions, and by minimal FOV angle val-
ues with less than 1 collision on average. We find good performance with this method
and FOV angles α ≥ 60◦ and β ≥ 90◦.

When using the Goal method, agents generally start off the simulation with no
others in their FOV, therefore leading to minimal heading corrections and imminent
collisions that are only seen a moment before impact, and can not be avoided.

When using the Closest method, agents usually keep one other agent in their FOV,
and as the closest agent is generally travelling in the same direction as itself, there is
a low chance of trajectories coinciding and collisions happen with agents coming from
further away. This method would perhaps work better if all agents within the swarm
were heading in the same direction, but this hypothesis would need to be put to the test.

When using the Most method, by definition the agents were headed towards the
maximal amount of others possible, therefore have more opportunities to correct their
trajectory leading to less collisions. Indeed it is intuitive that an agent that can see
more, can react accordingly.

If we focus more on the FOV results, independent of the initialisation mode we
can see that in general a higher height angle β is required for fewer collisions when
compared to the width angle α. This is due to the fact that the implementation of our
model corrects the heading around the z-axis (yaw) and does not allow the heading
and FOV to rotate up and down (pitch and roll). This leads to lower width angles
α performing better than lower height angles β. Indeed in many cases, agents would

18

3.4 Future Work 3 RESULTS AND DISCUSSION

avoid others trajectories by flying under or over, therefore not seeing other agents from
beneath or from above, leading to collisions.

3.4 Future Work

Although these first results are interesting, it would be necessary to add new metrics
and experiments to evaluate and optimise trajectory speed. Here we would evaluate
how long it would take different numbers of agents, in different environments to ac-
complish a certain task such as point-to-point navigation.

Adding another parameter to the limited FOV such as an azimuth as in figure 8
would allow to evaluate even more possible sensing configurations resembling what we
can see in nature.

Figure 8: Graphical representation of the sensing configurations of an agent for different
limited field of view including the azimuth [9]

It would also be enlightening to see how swarms would act together to accomplish
a certain goal together, this could be by passing through obstacles, or reaching a des-
tination as a swarm rather than flying against each other and avoiding collisions.

It would also be interesting to revisit the approach stated in part 2.5 to compute an
optimal heading input using a predictive model like for the trajectory generation. This
would allow to compute a solve quadratic programming that would include the heading
and the limited FOV in the cost function and in the constraints. Heading initialisation
could have less of an impact here as each agent’s heading would be optimised at each
iteration according to a predictive model, and would perhaps converge to a unique
value independent of its initial state.

19

4 CONCLUSION

4 Conclusion

In conclusion, we introduced the effect of a limited field of view to a previously func-
tional predictive model [2], combining a state of the art collision avoidance algorithm
with real world constraints such as the limited field of view found in off the shelf sensors.

After comparing multiple collision avoidance algorithms, on-demand collision avoid-
ance was selected as it showed the best performances for the model. An attempt to
add heading and heading velocity to the agents states to solve the existing quadratic
programming problem was made unsuccessfully, but to correct this issue the model
was divided into two problems. An optimisation problem for the trajectory generation
and obstacle avoidance, with a separate controller for the heading of the agents. After
position and heading initialisation, we used a proportional controller to ensure that
each agent was tracking other agents within their FOV to avoid collisions.

Field of view parameters such as width and height angles were compared with dif-
ferent initialisation methods to show that best performances occured with FOV width
angles above 60◦ and height angles above 90◦, when agents were initialised with the
highest number of other agents possible with their FOV. We see trajectory generation
and point-to-point navigation with up to 9 agents with on average less than a single
collision with these parameters.

We notice that initialisation plays an important role in our model, and that it would
be interesting to implement vertical heading control to lower the possible width angle
lower than the reported 90◦ value for limited FOV.

Future work would include adding different FOV parameters such as an azimuth
dividing the FOV into to separate regions. Trajectory completion speed would also
have to be evaluated according to certain metrics to be defined. It would finally be
interesting will to update the predictive model with the heading angle in the state
space, and updating the quadratic cost function with limited field of view sensing
rather than solving two separate problems.

20

REFERENCES REFERENCES

References

[1] C. W. Reynolds, Flocks, Herds, and Schools: A Distributed Behavioral Model (1987)

[2] C. E. Luis, M. Vukosavljev, and A. P. Schoellig Online Trajectory Generation with
Distributed Model Predictive Control for Multi-Robot Motion Planning (2019)

[3] R. Van Parys and G. Pipeleers, Online distributed motion planning for multi-vehicle
systems (2016)

[4] D. E. Chang and J. E. Marsden, Gyroscopic forces and collision avoidance with
convex obstacles,” in New trends in nonlinear dynamics and control and their ap-
plications (2003)

[5] J. Borenstein and Y. Koren, The vector field histogram-fast obstacle avoidance for
mobile robots (1991)

[6] S. Roelofsen, D. Gillet and A. Martinoli Collision Avoidance with Limited Field of
View Sensing: A Velocity Obstacle Approach (2017)

[7] R. Bastien and P. Romanczuk A model of collective behavior based purely on vision
(2020)

[8] G. Vásárhelyi, C. Virágh, G Somorjai, T Nepusz, A. E. Eiben, T Vicsek Optimized
flocking of autonomous drones in confined environments (2018)

[9] E. Soria, F. Schiano, D. Floreano The influence of limited visual sensing on the
Reynolds flocking algorithm (2019)

21

	Introduction
	Motivation
	Relevant Literature

	Methodology
	Problem Statement
	Assumptions
	Online Distributed Model Predictive Control
	Trajectory
	Model and constraints
	Collision Avoidance
	Cost Function

	Heading Angle control
	Limited Field of View
	Initialisation Methods
	Control

	Loose ends

	Results and Discussion
	Experiment
	Results
	Discussion
	Future Work

	Conclusion

